Python Basics

March 22, 2018
Contents

Introduction 4
Before Numpy 4
The Environment and Choices . . . . . . . . . . . 4
Launching the Jupyter Notebook . . . . . ... ... ... .. .. ... .. ... 4
Launching the IPython QT Console with the Canopy Editor . . ... ... .. 6
Launching the IPython QT Console From the Terminal . . . . ... ... ... 8
Launching the Native Python Console From the Terminal . . ... ... ... 9
Ending Your Session . . . .. ... ... ... .. L o oo 9

Data Types and Simple Calculations . . . ... ... ... ... ... ... ... 9
HelloWorld . . . . . . . e 9

float, complex, long, int, str,and boolean . . . . . . . . . . ... ... ... 10

Data Structures . . . . . . . oL e e e 17
Lists . . o o e 17

Tuples . . . . . . 19
Dictionaries . . . . . . . . . e 20
Variables . . . . . . . . 21
Formatting Strings and Gathering UserInput . . . . . ... ... ... ......... 21
Formatting Strings and Printing . . . . ... ... ... ... ... ...... 21
Gathering UserInput. . . . ... ... ... ... ... .. . . .. 23

Flow Control . . . . . . . . . . e 25
If, elif, and else . . . . . . . . . . . .. e 26
ForLoops . . . . . . e 27
WhileLoops . . . . . . .. . 28

The Statements break and continue . . . . . .. .. ... ... ... ... .. 29
Exceptions: try, except, and finally Blocks . . ... ... . .... ... ....... 30
Functions . . . . . . . . . e 30
Object Oriented Python: WritingaClass . . . . ... ................... 31
Basics . . . . .o e 31
WritingaSimpleClass . . . . ... .. ... ... .. ... .. . . ... 31



After Numpy 33

NumPy Fundamentals . . . .. ... ... ... ... ... .. .. . .. . . 33

The N-Dimensional Array and Available Types . . . ... ... ........ 33

Array Creation . . ... ... ... .. ... ... e 35

Working With Arrays . . . . ... ... ... . L 36

Graphics and More with Matplotlib 40
Signals and Systems Tools and Examples 40
The Scipy Module scipy.signal . .. .. ... ... .. ... .. ... .. ... .. .. 40
Using scikit-dsp-comm . . . .. ... ... ... ... e 41
MoreModules . . . . . . .. L e 42
ASimple DSPClassCaseStudy . . . . . ... ... ... ... ............ 42
TheclassCodeBase . . . . . ... ... ... . ... . . . .. 42

Lowpass and Bandpass Examples . . . ... ... ................ 47

References 49

In [1]: Ypylab inline
#/matplotlib gt
#from __future__ import division # use so 1/2 = 0.5, etc.
import sk_dsp_comm.sigsys as ss
import scipy.signal as signal
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]: Yconfig InlineBackend.figure_formats=['svg'] # SVG inline viewing
#Jiconfig InlineBackend. figure_formats=['pdf'] # render pdf figs for LaTeX



In [34]: print('Hello World')

Hello World

In [35]: 2*pi
Out[35]: 6.283185307179586
In [36]: arange(0,1,.1)

Out[36]: array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])



Introduction

This tutorial is structured around the idea that you want to get up and running with Python using
PyLab as quickly as possible. The first question I asked my myself before I started using PyLab
was why consider Python? What makes it a vialble alternative to other languages available for sci-
entific and engineering computations and simulations? OK, everyone has favorites, and presently
MATLAB is very popular in the signals and system community. Is there a need to change? This
is a debate that lies outside the scope of this tutorial, but the ability to use open-source tools that
work really, really well is very compelling.
To answer the first question, why consider Python, I can say:

1. The NumPy library
2. combined with Matplotlib

3. The SciPy library of modules, particularly signal, provides reasonable suppost for signals
and systems work. Additional libraries of modules are also available

Before Numpy

I have been saying a lot about using Python with Numpy as a means to do scientific and engineer-
ing analysis, simulation, and visualization. The fact of the matter is, Python is a good language
for doing many other things outside the computational realm.

Numpy plus Scipy are key elements to the attractiveness of using Python, but before getting
too carried away with the great scientific computing abiliies of the language, you should learn
some basics of the language. This way you will feel more comfortable at coding and debugging.

Before exploring the core language, I will spend time going over the environment and various
choices.

The Environment and Choices

How you choose to work with Python is up to you. I do have some strong suggestions. But
first I want to review four options in order of most recommended to least recommended. My
recommendations assume you are just starting out with Python, so I have a bias towards the
Jupyter notebook.

The first thing you want to do is get a version of Python with scientific support included. When
this notebook was first created I was using Canopy, but now my preference is to use Anaconda.
To learn more about the Jupyter notebook and its furture see Jupyter.

Launching the Jupyter Notebook

Regardless of the operating system, Windows, Mac OS, or Linux, you want to get a terminal
window open. It is best if the terminal window is opened at the top level of your user account,
so you will be able to navigate to any folder of interest. Note: In Windows 10x I recoimment the
use of powershell. This is done by clicking the file menu from the file manager and then selecting
powershell. It turns out with the notebook interface you can easily navigate to a location interest
and then launch an existing notebook or create a new notebook.

In [39]: Image('Python_Basics_files/LaunchNotebook2.png',width="'90%")



Out [39] :

® 0 - markwickert — jupyter-notebook » python — 80x24

Last login: Mon Mar 19 ©87:11:28 on ttyseee
en272-1:~ markwickert$ jupyter notebook

[Launch IPython notebook from a terminal window
(Windows, Mac, Linux)

Files Running Clusters
Select items to perform actions on them. Upload New = &
~ B / Documents / Courses / Tablet / Python_Basics_saved Name 4 Last Modified 4
i B seconds ago
3 Python_Basics_figs.graffle seconds ago
3 Python_Basics_files 3 years ago

Hunning 4 minutes ago

& Python Basics.ipynb |

( Open an existing notebook or create a new one )

\tableofcontents

% These TeX commands run at the start to remove section numbering
\renewcommand{\thesection}{\hspace*{-1.0em}}
\renewcommand{\thesubsection}{\hspace*{-1.0em}}
\renewcommand{\thesubsubsection}{\hspace*{-1.0em}}

In [1]: %pylab inline
#¢matplotlib gt
#from _ future import division # use so 1/2 = 0.5, etc.
import sk_dsp_comm.sigsys as ss
import scipy.signal as signal
from IPython.display import Image, SVG

Populating the interactive namespace from numpy and matplotlib

In [2]: %config InlineBackend.figure_ formats=['svg'] # SVG inline viewing
##config InlineBackend.figure formats=['pdf'] # render pdf figs for LaTeX

\newpage

In [34]: print('Hello World')

Hello World

In [35]: 2*pi

Out[35]: 6.283185307179586

In [36]: arange(0,1,.1)

out[36]: array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])

From the above you can see that the notebook is all set. Note that the first cell is only relevant
if you intend to render your notebook to pdf using the LaTeX backend. This requires that you



Click here to download full PDF material



https://www.computer-pdf.com/programming/803-tutorial-python-basics.html

