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This course reader has had an interesting evolutionary history that in some ways mirrors
the genesis of the C++ language itself.  Just as Bjarne Stroustup’s first version of C++
was implemented on top of a C language base, this reader began its life as Eric Roberts’s
textbook Programming Abstractions in C (Addison-Wesley, 1998).  In 2002-03, Julie
Zelenski updated it for use with the C++ programming language, which we began using
in CS106B and CS106X during that year.

Although the revised text worked fairly well at the outset, CS106B and CS106X have
evolved in recent years so that their structure no longer tracks the organization of the
book.  This year, we’re engaged in the process of rewriting the book so that students in
these courses can use it as both a tutorial and a reference.  As always, that process takes a
considerable amount to time, and there are likely to be some problems as we update the
reader.  At the same time, we’re convinced that the material in CS106B and CS106X is
tremendously exciting and will be able to carry us through a quarter or two of instability,
and we will end up with an even better course in the future.

We want to thank our colleagues at Stanford, several generations of section leaders (with
special thanks to Dan Bentley and Keith Schwarz), and so many students over the
years—all of whom have helped make it so exciting to teach this wonderful material.
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