
Programming
Abstractions in C++

Eric S. Roberts and Julie Zelenski

This course reader has had an interesting evolutionary history that in some ways mirrors
the genesis of the C++ language itself. Just as Bjarne Stroustup’s first version of C++
was implemented on top of a C language base, this reader began its life as Eric Roberts’s
textbook Programming Abstractions in C (Addison-Wesley, 1998). In 2002-03, Julie
Zelenski updated it for use with the C++ programming language, which we began using
in CS106B and CS106X during that year.

Although the revised text worked fairly well at the outset, CS106B and CS106X have
evolved in recent years so that their structure no longer tracks the organization of the
book. This year, we’re engaged in the process of rewriting the book so that students in
these courses can use it as both a tutorial and a reference. As always, that process takes a
considerable amount to time, and there are likely to be some problems as we update the
reader. At the same time, we’re convinced that the material in CS106B and CS106X is
tremendously exciting and will be able to carry us through a quarter or two of instability,
and we will end up with an even better course in the future.

We want to thank our colleagues at Stanford, several generations of section leaders (with
special thanks to Dan Bentley and Keith Schwarz), and so many students over the
years—all of whom have helped make it so exciting to teach this wonderful material.

ii

Programming Abstractions in C++

Chapter 1. An Overview of C++ 1

1.1 What is C++? 2
The object-oriented paradigm; The compilation process

1.2 The structure of a C++ program 5
Comments; Library inclusions; Program-level definitions; Function prototypes;
The main program; Function definitions

1.3 Variables, values, and types 9
Naming conventions; Local and global variables; The concept of a data type;
Integer types; Floating-point types; Text types; Boolean type; Simple input and
output

1.4 Expressions 16
Precedence and associativity; Mixing types in an expression; Integer division and
the remainder operator; Type casts; The assignment operator; Increment and
decrement operators; Boolean operators

1.5 Statements 24
Simple statements; Blocks; The if statement; The switch statement; The while
statement; The for statement

1.6 Functions 32
Returning results from functions; Function definitions and prototypes; The
mechanics of the function-calling process; Passing parameters by reference

Summary 38
Review questions 39
Programming exercises 41

Chapter 2. Data Types in C++ 45

2.1 Enumeration types 46
Internal representation of enumeration types; Scalar types

2.2 Data and memory 49
Bits; bytes; and words; Memory addresses

2.3 Pointers 51
Using addresses as data values; Declaring pointer variables; The fundamental
pointer operations

2.4 Arrays 56
Array declaration; Array selection; Effective and allocated sizes; Initialization of
arrays; Multidimensional arrays

2.5 Pointers and arrays 64
The relationship between pointers and arrays

2.6 Records 67
Defining a new structure type; Declaring structure variables; Record selection;
Initializing records; Pointers to records

2.7 Dynamic allocation 71
Coping with memory limitations; Dynamic arrays; Dynamic records

iii

Summary 74
Review questions 74
Programming exercises 77

Chapter 3. Libraries and Interfaces 85

3.1 The concept of an interface 86
Interfaces and implementations; Packages and abstractions; Principles of good
interface design

3.2 A random number interface 89
The structure of the random.h interface; Constructing a client program; The ANSI
functions for random numbers; The random.cpp implementation

3.3 Strings 98
The data type string; Operations on the string type ; The strutils.h
interface; An aside about C-style strings

3.4 Standard I/O and file streams 105
Data files; Using file streams in C++; Standard streams; Formatted stream output;
Formatted stream input; Single character I/O; Rereading characters from an input
file; Line-oriented I/O

3.5 Other ANSI libraries 112

Summary 113
Review questions 113
Programming exercises 116

Chapter 4. Using Abstract Data Types 123

4.1 The Vector class 125
Specifying the base type of a Vector; Declaring a new Vector object; Operations
on the Vector class; Iterating through the elements of a Vector; Passing a Vector
as a parameter

4.2 The Grid class 131

4.3 The Stack class 133
The structure of the Stack class

4.4 The Queue class 136
Simulations and models; The waiting-line model; Discrete time; Events in
simulated time; Implementing the simulation

4.5 The Map class 146
The structure of the Map class; Using maps in an application; Maps as associative
arrays

4.6 The Lexicon class 151
The structure of the Lexicon class; A simple application of the Lexicon class;
Why are lexicons useful if maps already exist

4.7 The Scanner class 154
Setting scanner options

4.8 Iterators 156
The standard iterator pattern; Iteration order; A simple iterator example;
Computing word frequencies

iv

Summary 163
Review questions 164
Programming exercises 165

Chapter 5. Introduction to recursion 173

5.1 A simple example of recursion 174

5.2 The factorial function 176
The recursive formulation of Fact; Tracing the recursive process; The recursive
leap of faith

5.3 The Fibonacci function 181
Computing terms in the Fibonacci sequence; Gaining confidence in the recursive
implementation; Recursion is not to blame

5.4 Other examples of recursion 187
Detecting palindromes; Binary search; Mutual recursion

5.5 Thinking recursively 192
Maintaining a holistic perspective; Avoiding the common pitfalls

Summary 194
Review questions 195
Programming exercises 197

Chapter 6. Recursive procedures 201

6.1 The Tower of Hanoi 202
Framing the problem; Finding a recursive strategy; Validating the strategy;
Coding the solution; Tracing the recursive process

6.2 Generating permutations 211
The recursive insight

6.3 Graphical applications of recursion 213
The graphics library; An example from computer art; Fractals

Summary 224
Review questions 225
Programming exercises 226

Chapter 7. Backtracking algorithms 235

7.1 Solving a maze by recursive backtracking 236
The right-hand rule; Finding a recursive approach; Identifying the simple cases;
Coding the maze solution algorithm; Convincing yourself that the solution works

7.2 Backtracking and games 245
The game of nim; A generalized program for two-player games; The minimax
strategy; Implementing the minimax algorithm; Using the general strategy to
solve a specific game

Summary 269
Review questions 270
Programming exercises 271

v

Chapter 8. Algorithmic analysis 277

8.1 The sorting problem 278
The selection sort algorithm; Empirical measurements of performance; Analyzing
the performance of selection sort

8.2 Computational complexity and big-O notation 282
Big-O notation; Standard simplifications of big-O; Predicting computational
complexity from code structure; Worst-case versus average-case complexity; A
formal definition of big-O

8.3 Recursion to the rescue 288
The power of divide-and-conquer strategies; Merging two vectors; The merge sort
algorithm; The computational complexity of merge sort; Comparing N2 and N log
N performance

8.4 Standard complexity classes 294

8.5 The Quicksort algorithm 296
Partitioning the vector; Analyzing the performance of Quicksort

8.6 Mathematical induction 301

Summary 304
Review questions 305
Programming exercises 307

Chapter 9. Classes and objects 313

9.1 A simple example of a class definition 314
Defining a Point class; Implementing methods in a class; Constructors and
destructors; The keyword this

9.2 Implementing a specialized version of the Stack class 319
Defining the CharStack interface; Representing the stack data; The advantages of
object encapsulation; Removing the maximum size limitation; Object copying

9.3 Implementing the Scanner class 328

Summary 328
Review questions 334
Programming exercises 335

Chapter 10. Efficiency and Data Representation 339

10.1 The concept of an editor buffer 340

10.2 Defining the buffer abstraction 341
The public interface of the EditorBuffer class; Coding the editor application

10.3 Implementing the editor using arrays 345
Defining the private data representation; Implementing the buffer operations;
Assessing the computational complexity of the array implementation

10.4 Implementing the editor using stacks 352
Defining the private data representation for the stack-based buffer; Implementing
the buffer operations; Comparing computational complexities

Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/806-tutorial-programming-abstractions-in-c.html

