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Preface

Static program analysis is the art of reasoning about the behavior of computer
programs without actually running them. This is useful not only in optimizing
compilers for producing efficient code but also for automatic error detection
and other tools that can help programmers. A static program analyzer is a pro-
gram that reasons about the behavior of other programs. For anyone interested
in programming, what can be more fun than writing programs that analyze
programs?

As known from Turing and Rice, all nontrivial properties of the behavior
of programs written in common programming languages are mathematically
undecidable. This means that automated reasoning of software generally must
involve approximation. It is also well known that testing, i.e. concretely running
programs and inspecting the output, may reveal errors but generally cannot
show their absence. In contrast, static program analysis can — with the right kind
of approximations — check all possible executions of the programs and provide
guarantees about their properties. One of the key challenges when developing
such analyses is how to ensure high precision and efficiency to be practically
useful. For example, nobody will use an analysis designed for bug finding if
it reports many false positives or if it is too slow to fit into real-world software
development processes.

These notes present principles and applications of static analysis of pro-
grams. We cover basic type analysis, lattice theory, control flow graphs, dataflow
analysis, fixed-point algorithms, widening and narrowing, path sensitivity, rela-
tional analysis, interprocedural analysis, context sensitivity, control-flow ana-
lysis, several flavors of pointer analysis, and key concepts of semantics-based
abstract interpretation. A tiny imperative programming language with point-
ers and first-class functions is subjected to numerous different static analyses
illustrating the techniques that are presented.

We take a constraint-based approach to static analysis where suitable constraint
systems conceptually divide the analysis task into a front-end that generates
constraints from program code and a back-end that solves the constraints to
produce the analysis results. This approach enables separating the analysis
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