Static Program Analysis

Anders Mgller and Michael 1. Schwartzbach

September 9, 2020

Copyright (© 2008-2020 Anders Mpller and Michael I. Schwartzbach

Department of Computer Science
Aarhus University, Denmark

This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

Contents

Preface

1

Introduction

1.1 Applications of Static Program Analysis
1.2 Approximative Answers
1.3 Undecidability of Program Correctness

A Tiny Imperative Programming Language

21 TheSyntaxof TIP
22 Example Programs
2.3 Normalization
2.4 AbstractSyntax Trees
25 Control Flow Graphs

Type Analysis

31 Types
32 TypeConstraints
3.3 Solving Constraints with Unification
34 RecordTypes.
3.5 Limitations of the Type Analysis

Lattice Theory

41 Motivating Example: Sign Analysis
42 Lattices
4.3 Constructing Lattices
4.4 Equations, Monotonicity, and Fixed-Points

Dataflow Analysis with Monotone Frameworks

51 Sign Analysis, Revisited
5.2 Constant Propagation Analysis
5.3 Fixed-Point Algorithms

iii

AN W

ii

CONTENTS

10

11

5.4 Live Variables Analysis
5.5 Auvailable Expressions Analysis

5.6 Very Busy Expressions Analysis
5.7 Reaching Definitions Analysis
5.8 Forward, Backward, May, and Must
5.9 Initialized Variables Analysis
5.10 Transfer Functions

Widening

6.1 Interval Analysis
6.2 Widening and Narrowing

Path Sensitivity and Relational Analysis
7.1 Control Sensitivity using Assertions
7.2 Paths and Relations

Interprocedural Analysis

8.1 Interprocedural Control Flow Graphs
8.2 Context Sensitivity
8.3 Context Sensitivity with Call Strings
8.4 Context Sensitivity with the Functional Approach

Control Flow Analysis

9.1 Closure Analysis for the A-calculus
9.2 The Cubic Algorithm
9.3 TIP with First-Class Function
9.4 Control Flow in Object Oriented Languages

Pointer Analysis
10.1 Allocation-Site Abstraction
10.2 Andersen’s Algorithm
10.3 Steensgaard’s Algorithm
10.4 Interprocedural Points-To Analysis
10.5 Null Pointer Analysis
10.6 Flow-Sensitive Points-To Analysis
10.7 Escape Analysis

Abstract Interpretation

11.1 A Collecting Semantics for TIP
11.2 Abstraction and Concretization
11.3 Soundness
11.4 Optimality
11.5 Completeness
11.6 Trace Semantics

Bibliography

Preface

Static program analysis is the art of reasoning about the behavior of computer
programs without actually running them. This is useful not only in optimizing
compilers for producing efficient code but also for automatic error detection
and other tools that can help programmers. A static program analyzer is a pro-
gram that reasons about the behavior of other programs. For anyone interested
in programming, what can be more fun than writing programs that analyze
programs?

As known from Turing and Rice, all nontrivial properties of the behavior
of programs written in common programming languages are mathematically
undecidable. This means that automated reasoning of software generally must
involve approximation. It is also well known that testing, i.e. concretely running
programs and inspecting the output, may reveal errors but generally cannot
show their absence. In contrast, static program analysis can — with the right kind
of approximations — check all possible executions of the programs and provide
guarantees about their properties. One of the key challenges when developing
such analyses is how to ensure high precision and efficiency to be practically
useful. For example, nobody will use an analysis designed for bug finding if
it reports many false positives or if it is too slow to fit into real-world software
development processes.

These notes present principles and applications of static analysis of pro-
grams. We cover basic type analysis, lattice theory, control flow graphs, dataflow
analysis, fixed-point algorithms, widening and narrowing, path sensitivity, rela-
tional analysis, interprocedural analysis, context sensitivity, control-flow ana-
lysis, several flavors of pointer analysis, and key concepts of semantics-based
abstract interpretation. A tiny imperative programming language with point-
ers and first-class functions is subjected to numerous different static analyses
illustrating the techniques that are presented.

We take a constraint-based approach to static analysis where suitable constraint
systems conceptually divide the analysis task into a front-end that generates
constraints from program code and a back-end that solves the constraints to
produce the analysis results. This approach enables separating the analysis

iii

Click here to download full PDF material

https://www.computer-pdf.com/programming/936-tutorial-static-program-analysis.html

