
Data Structures

en.wikibooks.org

July 5, 2015

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia
projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. A
URI to this license is given in the list of figures on page 153. If this document is a derived work
from the contents of one of these projects and the content was still licensed by the project under
this license at the time of derivation this document has to be licensed under the same, a similar or a
compatible license, as stated in section 4b of the license. The list of contributors is included in chapter
Contributors on page 149. The licenses GPL, LGPL and GFDL are included in chapter Licenses on
page 157, since this book and/or parts of it may or may not be licensed under one or more of these
licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of
figures on page 153. This PDF was generated by the LATEX typesetting software. The LATEX source
code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from
the PDF file, you can use the pdfdetach tool including in the poppler suite, or the http://www.
pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility. Some PDF viewers may also let you save
the attachment to a file. After extracting it from the PDF file you have to rename it to source.7z.
To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX
source itself was generated by a program written by Dirk Hünniger, which is freely available under
an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.

Contents
0.1 Asymptotic Notation . 11
0.2 Arrays . 15
0.3 List Structures and Iterators . 19
0.4 Stacks and Queues . 31
0.5 References . 66
0.6 Trees . 66
0.7 References . 99
0.8 External Links . 99
0.9 Compute the extreme value . 101
0.10 Removing the Extreme Value . 101
0.11 Inserting a value into the heap . 102
0.12 TODO . 102
0.13 Applications of Priority Heaps . 103
0.14 Graphs . 104
0.15 Hash Tables . 108
0.16 List implementation . 142
0.17 Bit array implementation . 143
0.18 Associative array implementation . 144
0.19 References . 147

1 Contributors 149

List of Figures 153

2 Licenses 157
2.1 GNU GENERAL PUBLIC LICENSE . 157
2.2 GNU Free Documentation License . 158
2.3 GNU Lesser General Public License . 159

Figure 1

1

Contents

Figure 2 CC

This work is licensed under the Creative Commons1 Attribution-Share Alike 3.0 Unported2
license. In short: you are free to share and to make derivatives of this work under the
conditions that you appropriately attribute it, and that you only distribute it under the
same, similar or a compatible3 license. Any of the above conditions can be waived if you
get permission from the copyright holder.

Any source code included if not bearing a different statement shall be considered under the public
domain.

Images used have their own copyright status, specified in their respective repositories
(en.wikibooks.org or at commons.wikimedia.org).

Acknowledgment is given for using some contents from Wikipedia4.
5

Computers can store and process vast amounts of data. Formal data structures enable
a programmer to mentally structure large amounts of data into conceptually manageable
relationships.

Sometimes we use data structures to allow us to do more: for example, to accomplish fast
searching or sorting of data. Other times, we use data structures so that we can do less : for
example, the concept of the stack is a limited form of a more general data structure. These
limitations provide us with guarantees that allow us to reason about our programs more
easily. Data structures also provide guarantees about algorithmic complexity — choosing
an appropriate data structure for a job is crucial for writing good software.

Because data structures are higher-level abstractions, they present to us operations on
groups of data, such as adding an item to a list, or looking up the highest-priority item
in a queue. When a data structure provides operations, we can call the data structure an
abstract data type (sometimes abbreviated as ADT). Abstract data types can minimize
dependencies in your code, which is important when your code needs to be changed. Because
you are abstracted away from lower-level details, some of the higher-level commonalities one

1 http://en.wikipedia.org/wiki/Creative%20Commons
2 http://creativecommons.org/licenses/by-sa/3.0/
3 http://creativecommons.org/compatiblelicenses
4 http://en.wikipedia.org/wiki/
5 http://en.wikibooks.org/wiki/Category%3AData%20Structures

2

Contents

data structure shares with a different data structure can be used to replace one with the
other.

Our programming languages come equipped with a set of built-in types, such as integers
and floating-point numbers, that allow us to work with data objects for which the ma-
chine’s processor has native support. These built-in types are abstractions of what the
processor actually provides because built-in types hide details both about their execution
and limitations.

For example, when we use a floating-point number we are primarily concerned with its value
and the operations that can be applied to it. Consider computing the length of a hypotenuse:

let c := sqrt(a * a + b * b)

The machine code generated from the above would use common patterns for computing
these values and accumulating the result. In fact, these patterns are so repetitious that
high-level languages were created to avoid this redundancy and to allow programmers to
think about what value was computed instead of how it was computed.

Two useful and related concepts are at play here:

• Encapsulation is when common patterns are grouped together under a single name and
then parameterized, in order to achieve a higher-level understanding of that pattern. For
example, the multiplication operation requires two source values and writes the product
of those two values to a given destination. The operation is parameterized by both the
two sources and the single destination.

• Abstraction is a mechanism to hide the implementation details of an abstraction away
from the users of the abstraction. When we multiply numbers, for example, we don’t
need to know the technique actually used by the processor, we just need to know its
properties.

A programming language is both an abstraction of a machine and a tool to encapsulate-away
the machine’s inner details. For example, a program written in a programming language
can be compiled to several different machine architectures when that programming language
sufficiently encapsulates the user away from any one machine.

In this book, we take the abstraction and encapsulation that our programming languages
provide a step further: When applications get to be more complex, the abstractions of
programming languages become too low-level to effectively manage. Thus, we build our own
abstractions on top of these lower-level constructs. We can even build further abstractions
on top of those abstractions. Each time we build upwards, we lose access to the lower-level
implementation details. While losing such access might sound like a bad trade off, it is
actually quite a bargain: We are primarily concerned with solving the problem at hand
rather than with any trivial decisions that could have just as arbitrarily been replaced with
a different decision. When we can think on higher levels, we relieve ourselves of these
burdens.

Each data structure that we cover in this book can be thought of as a single unit that has
a set of values and a set of operations that can be performed to either access or change
these values. The data structure itself can be understood as a set of the data structure’s

3

Click here to download full PDF material

https://www.computer-pdf.com/other/970-tutorial-data-structures.html

