Opigee Google Cloud

Web API Design: The Missing Link

Best Practices for Crafting Interfaces that Developers Love




Table of contents

Foreword
Introduction
Web APls and REST
» The Job of the API Designer
* What is aweb API?
» What is REST?
HTTP and REST: A Data-oriented Design Paradigm
« \Why is a data-oriented approach useful?
» API Design Elements
Designing Representations
» Use JSON
» Keep your JSON simple
* Include Links
« Why is this better?
« Are URI templates still needed when you have links?
« An analogy with the World Wide Web
« Including links, step 2
« Aword of caution
» How should | represent links in my resources?
* Who uses links?

 More Later

05
07
08
08
08
08
10
10
12
13
13
13
15
17
17
18
20
21
22
22
25



Designing URLs
» In URLs, nouns are good; verbs are bad
* Well-known URLs
* Designing entity URLs
» Permalinks
» The web is flat
* Solutions to the renaming dilemma
« Stability of types
Designing query URLs
« Representing relationships in query URLs
» Express relationships symmetrically in URLs and representations
» A general model for query URLs
« Path parameters, or matrix parameters
* Filtering collections
» What about responses that don't involve persistent resources?
More on Representation Design
* Include self-reference and kind properties
* Why are the self and the kind properties good ideas?
* How should | represent collections?
 Paginated collections
» Custom resource types and using URLs for resource types
* Supporting multiple formats
« \What about property names?
 Date and time formats
Chatty APIs
Pagination and partial response
« Add optional fields in a comma-delimited list

« Make it easy for application developers
to paginate objects in a database

26
26
26
26
27
28
29
32
32
34

35
36
36
37
40
40
40
40
43
45
46
47
48
48
48
49

50



Handling Errors
» A message for people
Modeling Actions
Authentication
Complement with an SDK
Versioning
* Doing nothing for versioning
* Links and version identifiers in URLs make awkward bedfellows
Conclusion
» Resources

Appendix: Other Approaches to Representing Links

51
53
53
55
55
56
56
57
60
61
62



Foreword

The state of the art in web APl design is constantly evolving as web APls continue to become more
important in business and in technology.

As aleader in APl management, Apigee works with hundreds of customers to develop and manage a large
number of APIs. By reflecting on our experiences and those of our customers and the industry at large,
we have gained some insights into which APl design innovations are bringing real benefits and becoming
notable trends.

This book is our attempt to capture some of the significant trends in APl design that we have seen emerge
in the past couple of years. This book tries to be clear and simple, but it is not intended to be a beginner’s
guide to API design. If you are looking for more introductory material, you may wish to consult previous
books from Apigee on the topic, like this one, or one of many other texts available.

Our earlier book used the example of a simple application for tracking dogs and their owners. In this book,
we show how that example might be evolved to match more recent thinking about APIs. Here are two
example resources from our earlier book:

https://dogtracker.com/dogs/12345678:
{ “id”: “12345678"

“kind”: “Dog”

“name”: “Lassie”,

“furColor”: “brown”

“owner”: “98765432"

and

https://dogtracker.com/persons/98765432 :

{ “id": "98765432",
“kind”: “Person”
“name” : “Joe Carraclough”,
“hairColor”: “brown”

}



Click here to download full PDF material



https://www.computer-pdf.com/web-programming/997-tutorial-web-api-design-the-missing-link.html

