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Foreword

The state of the art in web APl design is constantly evolving as web APls continue to become more
important in business and in technology.

As aleader in APl management, Apigee works with hundreds of customers to develop and manage a large
number of APIs. By reflecting on our experiences and those of our customers and the industry at large,
we have gained some insights into which APl design innovations are bringing real benefits and becoming
notable trends.

This book is our attempt to capture some of the significant trends in APl design that we have seen emerge
in the past couple of years. This book tries to be clear and simple, but it is not intended to be a beginner’s
guide to API design. If you are looking for more introductory material, you may wish to consult previous
books from Apigee on the topic, like this one, or one of many other texts available.

Our earlier book used the example of a simple application for tracking dogs and their owners. In this book,
we show how that example might be evolved to match more recent thinking about APIs. Here are two
example resources from our earlier book:

https://dogtracker.com/dogs/12345678:
{ “id”: “12345678"

“kind”: “Dog”

“name”: “Lassie”,

“furColor”: “brown”

“owner”: “98765432"

and

https://dogtracker.com/persons/98765432 :

{ “id": "98765432",
“kind”: “Person”
“name” : “Joe Carraclough”,
“hairColor”: “brown”

}
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